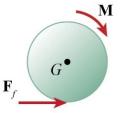

P6.7-2) Consider the 5-kg disk shown rolling to the right under the influence of a moment (M = 50 N-m). When driven in this manner, the disk typically will experience slip and the friction force \mathbf{F}_{f} will propel the wheel forward. Using this fact, estimate the angular acceleration α of the disk as well as the acceleration of its mass center \mathbf{a}_{G} . Assume that the coefficient of kinetic friction is $\mu_{k} = 0.35$ and that the wheel has a radius of 1.0 m.



<u>Given:</u>

Find:

Solution:

Calculate the mass moment of the disk.

What point is our reference?

Derive the disk's equation of motion.

Calculate the kinetic friction force.

F_{fk} = _____

Moment equation of motion is

α = _____

Force equation of motion is

I = _____

a = ____